Abstract
Accurate identification of rice varieties is of great significance for rice planting, field management and storage, and is also a key link in the process of agricultural breeding. In this study, a gradient boosting decision tree (GBDT) model was established based on hyperspectral imaging (HSI) to realize high-speed and non-destructive variety identification of six rice varieties. In this study, the near-infrared hyperspectral images of 600 rice samples of 6 varieties were taken as the research object, and the characteristic spectra of sensitive regions of the sample spectral images were processed by multiplicative scatter correction (MSC), and after the characteristic wavelengths were determined by the importance scores, the GBDT model to realize the identification of rice sample varieties, and the grid search algorithm was used to optimize the four internal parameters of GBDT. The results showed that the established GBDT model for the accuracy of rice variety identification of vitro test set samples reached 95%, indicating that HSI can be used to quickly and non-destructively identify rice varieties, and provide a new idea for batch online non-destructive testing of rice seeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.