Abstract

Cyclic plasma oxynitriding and cyclic plasma nitriding catalyzed by rare earth La of AISI 420 martensitic stainless steel were performed and compared with conventional plasma nitriding. The nitrided layers were investigated by means of an optical microscope, microhardness tester, Auger electron spectroscopy (AES), X-ray diffraction (XRD), wear machine, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The results show that the wear resistance of AISI 420 martensitic stainless steel is improved significantly by the two new rapid and deep plasma nitriding techniques. The new techniques increase the surface hardness of the nitrided layers and make the microhardness profiles gentler, which are consistent with the nitrogen concentration depth profiles. Meanwhile, the nitrided effect improves with increasing cycles. It was also found that the optimum phase compositions of nitrided layers with more γ′ phases and less ɛ phases for long-term service conditions can be obtained by the two new techniques, which is in agreement with the microstructure. In addition, traces of Fe 3O 4 were found in the cyclic plasma oxynitrided sample. Combining the SEM and EDS analysis indicated the existence of La in the nitrided layer of the sample under cyclic plasma nitriding catalyzed by rare earth La.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.