Abstract

Concurrently detecting the electrical activity of neurons and neurotransmitter release signals, will have a great significance in understanding the working mechanism of the brain. This paper describes a neural information detecting system based on microelectrode array(MEA) measuring neuroelectricity in hippocampus in vivo and dopamine(DA) in vitro. The detecting system contains of electrophysiological headstage, electrochemical headstage, microprocessor, electrophysiological signal amplifier, data acquisition module and neural signal analysis software. In electrophysiological test, the neural information detecting system was applied to detect neuroelectricity in hippocampus of SD rat with 16-channel microelectrode array in vivo. Active potentials were captured. The amplitude of the recorded neural spikes reached 182.90 μV, and signal to noise ratio was 7:1. For measure dopamine as neurotransmitter, there was a good linear relationship between response current and concentration of dopamine from 10nM to 18.88μ with correlation coefficient of 0.9974. Electrophysiological experiment and electrochemical experiment demonstrate the capability of the neural information detecting system to capture dual mode neural signal, which provides a convenient way to study dual mode operating mechanism of neural system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call