Abstract

Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potentialfor a broad range of neuroscience research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call