Abstract
It is crucial to understand and meet the multi-dimensional affective image needs of users for product form in a user demand-oriented product development model. Multi-objective evolutionary algorithms based on decomposition will be introduced into the field of kansei engineering to carry out research on product form optimisation design based on multi-objective evolutionary algorithms. A constrained multi-objective discrete optimisation model was established using the kansei engineering prediction model constructed through machine learning techniques as the objective function, and a reference vector guided evolutionary algorithm was used to solve it. The superiority of this method was verified by comparing it with other commonly used solving methods in this field. Combining entropy weight method and TOPSIS, select the optimisation design scheme that best meets the multi-dimensional affective needs of users from the obtained pareto set. Taking the train as an example, the proposed method was explained. The results indicate that the optimisation scheme obtained by this method can achieve the improvement and optimisation of product form in multiple affective dimensions. Meanwhile, a comparative study on the applicability of multi-objective evolutionary algorithms in the form optimisation problem of different affective dimensions is carried out to provide reference and suggestions for subsequent product design research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have