Abstract

Flexible job shop scheduling problem (FJSP), widely prevalent in many intelligent manufacturing industries, is one of the most classic problems of production scheduling and combinatorial optimization. In actual manufacturing enterprises, the setup of machines and the handling of jobs have an important impact on the scheduling plan. Furthermore, there is a trend for a cluster of machines with similar functionalities to form a work center. Considering the above constraints, a new order-driven multi-equipment work center FJSP model with setup and handling including multiple objectives encompassing the minimization of the makespan, the number of machine shutdowns, and the number of handling batches is established. An improved shuffled frog leading algorithm is designed to solve it through the optimization of the initial solution population, the improvement of evolutionary operations, and the incorporation of Pareto sorting. The algorithm also combines the speed calculation method in the gravity search algorithm to enhance the stability of the solution search. Some standard FJSP data benchmarks have been selected to evaluate the effectiveness of the algorithm, and the experimental results confirm the satisfactory performance of the proposed algorithm. Finally, a problem example is designed to demonstrate the algorithm’s capability to generate an excellent scheduling plan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.