Abstract

This paper presents models related to the manufacturing of ball-nosed end mills of solid carbide (BEMSC) with a chamfered cutting edge (CCE). A parallel grinding wheel (PGW) is selected, and the relationship between CCE face and PGW working face is determined. Based on the geometry models of BEMSC established in our previous work, the centre and axis vectors of PGW are calculated for the grinding of CCE face on bath the ball-nosed end and the cylinder, which is validated through a numerical simulation. In order to produce the tool, a grinding machine, SAACKE UMIF, is chosen. Targeting the grinding data of BEMSC, the transformations are carried out between the coordinate systems of workpiece and the NC programme according to the structural features of the machine. An algorithm is derived for dispersing grinding paths. As a result, the centre data and axis vector are generated with respect to the grinding machine. The BEMSC with CCE is machined using the selected machine, which demonstrates the correctness of the established models. Finally, the performance of the machined cutting tool is validated in comparison with a common BEMSC without CCE in the milling of a mould of a multi-hardness joint structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.