Abstract
To improve the sensitivity and dynamic range of microwave power sensors, a micro-electromechanical system (MEMS) dual-channel microwave power sensor is proposed in this study. The sensor is designed and manufactured using the GaAs monolithic microwave integrated circuit` (MMIC) process and MEMS technology. The microwave performance, overload power and sensitivity are theoretically studied. At 8–12 GHz, the return loss of the sensors with three different fixed beam sizes are approximately −10 dB, which is good microwave performance. The sensitivities for capacitive detection channel of the two sensors with larger sizes are 2.4 fF W−1 @10 GHz and 14.5 fF W−1 @10 GHz, respectively, and the sensitivities of the thermoelectric detection channel of the three sensors is 25.7 mV W−1, 24.9 mV W−1 and 24.2 mV W−1, respectively. Compared with traditional microwave power sensors, the sensor proposed takes into account the advantages of microwave power sensors in both thermoelectric and capacitive structures. This work helps lay the foundation for the design of microwave power sensors with a fixed beam structure and thermoelectric microwave power sensors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.