Abstract

With the large-scale integration of wind power, the voltage stability problem in the power system has become increasingly prominent. Therefore, this paper studies the maximum penetration ratio of wind power from the perspective of voltage stability. Firstly, the mathematical grid-connection model of the wind generator is established. Secondly, using the impedance modulus margin index (IMMI) and the Thevenin model, the analytical calculation method for maximum wind power penetration under the voltage stability margin constraint is proposed with theoretical derivation. Then, a typical case study is used to verify the feasibility and effectiveness of the proposed method. Finally, based on this, the key factors affecting the wind power penetration limit are analyzed from the source–grid–load side, and practical engineering measures to improve the maximum penetration ratio of wind power are summarized. This research will be helpful for the planning and operation of the high-proportion renewable energy power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call