Abstract
The deep mining of passengers’ travel data can identify competitive segments and gain insights into passengers’ characteristics and differentiated demands. This can not only effectively support precise marketing strategy adjustment of railway transport but also improve its competitiveness in the passenger transportation market. In this paper, hidden railway travel behaviour is introduced and integrated with railway travel behaviour to create a complete passenger travel chain, based on existing distance-based competitive segment recognition methods. The loyalty index values of passengers are calculated using this travel chain to identify competitive segments. Furthermore, passenger classification and grouping currently ignore social relationships as well as personal travel characteristics. Therefore, a novel passenger grouping method is proposed; it integrates individuals’ travel characteristics and social relations. Individual travel labels are created for travellers based on their travel data. Social relation topologies, such as ticketing relation, the relation of travelling together, and benefit relation via point redemption, can be extracted using these labels. Social relation traits can be retrieved using graph attention networks and multigraph fusion. Finally, travellers are categorised based on their individual travel characteristics. As an example, and a case study, the grouping of Guangzhou–Shanghai passengers in 2020 is taken which shows that the suggested method has the potential to improve both the precision and the feasibility of grouping railway passengers. As a result, new ideas for passenger grouping in railway marketing might be offered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.