Abstract

Tidal-level prediction is crucial for ensuring the safety and efficiency of offshore marine activities, port and channel management, water transportation resource development, and life-saving operations. Although tidal harmonic analysis is among the most prevalent methods for predicting tidal water level fluctuations, it relies on extensive data, and its long-term prediction accuracy can be limited. To enhance prediction performance, this paper proposes a model that combines the variational mode decomposition (VMD) algorithm with the long short-term memory (LSTM) neural network. The initial step involves decomposing the original data using the VMD algorithm, followed by applying the LSTM to each decomposition component. Finally, all prediction results are superimposed and summed. The model is tested using the 2018 tidal time series data from the Lvsi station in Zhoushan City and the 2020 tidal time series data from the Ganpu station. The results are compared with those from the classical harmonic analysis model, the traditional machine learning model, and the decomposition-based machine learning method. The experimental outcomes demonstrate the superior predictive capabilities of the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call