Abstract

Integrated communication–sensing–computing (ICSC) satellites, which integrate edge computing servers on Earth observation satellites to process collected data directly in orbit, are attracting growing attention. Nevertheless, some monitoring tasks involve sequential sub-tasks like target observation and movement prediction, leading to data dependencies. Moreover, the limited energy supply on satellites requires the sequential execution of sub-tasks. Therefore, inappropriate assignments can cause circular waiting among satellites, resulting in deadlocks. This paper formulates task offloading in ICSC satellites with data-dependent constraints as a mixed-integer linear programming (MILP) problem, aiming to minimize service latency and energy consumption simultaneously. Given the non-centrality of ICSC satellites, we propose a distributed deadlock-free task offloading (DDFTO) algorithm. DDFTO operates in parallel on each satellite, alternating between sub-task inclusion and consensus and sub-task removal until a common offloading assignment is reached. To avoid deadlocks arising from sub-task inclusion, we introduce the deadlock-free insertion mechanism (DFIM), which strategically restricts the insertion positions of sub-tasks based on interval relationships, ensuring deadlock-free assignments. Extensive experiments demonstrate the effectiveness of DFIM in avoiding deadlocks and show that the DDFTO algorithm outperforms benchmark algorithms in achieving deadlock-free offloading assignments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.