Abstract
This paper considers the interactive effects between the ego vehicle and other vehicles in a dynamic driving environment and proposes an autonomous vehicle lane-changing behavior decision-making and trajectory planning method based on graph convolutional networks (GCNs) and multi-segment polynomial curve optimization. Firstly, hierarchical modeling is applied to the dynamic driving environment, aggregating the dynamic interaction information of driving scenes in the form of graph-structured data. Graph convolutional neural networks are employed to process interaction information and generate ego vehicle's driving behavior decision commands. Subsequently, collision-free drivable areas are constructed based on the dynamic driving scene information. An optimization-based multi-segment polynomial curve trajectory planning method is employed to solve the optimization model, obtaining collision-free motion trajectories satisfying dynamic constraints and efficiently completing the lane-changing behavior of the vehicle. Finally, simulation and on-road vehicle experiments are conducted for the proposed method. The experimental results demonstrate that the proposed method outperforms traditional decision-making and planning methods, exhibiting good robustness, real-time performance, and strong scenario generalization capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.