Abstract

Aiming at the current lane line detection algorithm in complex traffic scenes, such as lane lines being blocked by shadows, blurred roads, and road sparseness, which lead to low lane line detection accuracy and poor real-time detection speed, this paper proposes a lane line detection algorithm based on instance segmentation. Firstly, the improved lightweight network RepVgg-A0 is used to encode road images, which expands the receptive field of the network; secondly, a multi-size asymmetric shuffling convolution model is proposed for the characteristics of sparse and slender lane lines, which enhances the ability to extract lane line features; an adaptive upsampling model is further proposed as a decoder, which upsamples the feature map to the original resolution for pixel-level classification and detection, and adds the lane line prediction branch to output the confidence of the lane line; and finally, the instance segmentation-based lane line detection algorithm is successfully deployed on the embedded platform Jetson Nano, and half-precision acceleration is performed using NVDIA's TensorRT framework. The experimental results show that the Acc value of the lane line detection algorithm based on instance segmentation is 96.7%, and the FPS is 77.5 fps/s. The detection speed deployed on the embedded platform Jetson Nano reaches 27 fps/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.