Abstract

Equipment performance deteriorates continuously during the production process, which makes it difficult to achieve the expected effect of production decisions made in advance. Predictive maintenance and production decisions integrated scheduling aim to rationalise maintenance activities. It has been extensively researched. However, past studies have assumed that faults obey a specific probability distribution based on historical data. It is difficult to analyse equipment that is brand new into service or has poor historical failure data. Thus, in this paper, we construct a twin model of a device based on a physical modelling approach and tune it to ensure high fidelity of the model. Degradation curves were created based on equipment characteristics and developed maintenance activities.Develop an integrated scheduling model for predictive maintenance and production decisions with the goal of minimising maximum processing time. An improved genetic algorithm is used to solve the problem optimally. Finally, apply a practical scenario to verify the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.