Abstract

BackgroundSoft tissue sarcoma is a rare and highly heterogeneous tumor in clinical practice. Pathological grading of the soft tissue sarcoma is a key factor in patient prognosis and treatment planning while the clinical data of soft tissue sarcoma are imbalanced. In this paper, we propose an effective solution to find the optimal imbalance machine learning model for predicting the classification of soft tissue sarcoma data.MethodsIn this paper, a large number of features are first obtained based on T_1WI images using the radiomics methods.Then, we explore the methods of feature selection, sampling and classification, get 17 imbalance machine learning models based on the above features and performed extensive experiments to classify imbalanced soft tissue sarcoma data. Meanwhile, we used another dataset splitting method as well, which could improve the classification performance and verify the validity of the models.ResultsThe experimental results show that the combination of extremely randomized trees (ERT) classification algorithm using SMOTETomek and the recursive feature elimination technique (RFE) performs best compared to other methods. The accuracy of RFE+STT+ERT is 81.57% , which is close to the accuracy of biopsy, and the accuracy is 95.69% when using another dataset splitting method.ConclusionPreoperative predicting pathological grade of soft tissue sarcoma in an accurate and noninvasive manner is essential. Our proposed machine learning method (RFE+STT+ERT) can make a positive contribution to solving the imbalanced data classification problem, which can favorably support the development of personalized treatment plans for soft tissue sarcoma patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.