Abstract

Preoperative prediction of the grade of soft tissue sarcomas (STSs) is important because of its effect on treatment planning. To assess the value of radiomics features in distinguishing histological grades of STSs. Retrospective. In all, 113 patients with pathology-confirmed low-grade (grade I), intermediate-grade (grade II), or high-grade (grade III) soft tissue sarcoma were collected. The 3.0T axial T1 -weighted imaging (T1 WI) with 550 msec repetition time (TR); 18 msec echo time (TE), 312 × 312 matrix, fat-suppressed fast spin-echo T2 WI with 4291 msec TR, 85 msec TE, 312 × 312 matrix. Multiple machine-learning methods were trained to establish classification models for predicting STS grades. Eighty STS patients (18 low-grade [grade I]; 62 high-grade [grades II-III]) were enrolled in the primary set and we tested the model with a validation set with 33 patients (7 low-grade, 26 high-grade). 1) Student's t-tests were applied for continuous variables and the χ2 test were applied for categorical variables between low-grade STS and high-grade STS groups. 2) For feature subset selection, either no subset selection or recursive feature elimination was performed. This technology was combined with random forest and support vector machine-learning methods. Finally, to overcome the disparity in the frequencies of the STS grades, each machine-learning model was trained i) without subsampling, ii) with the synthetic minority oversampling technique, and iii) with random oversampling examples, for a total of 12 combinations of machine-learning algorithms that were assessed, trained, and tested in the validation cohort. The best classification model for the prediction of STS grade was a combination of features selected by recursive feature elimination and random forest classification algorithms with a synthetic minority oversampling technique, which had an area under the curve of 0.9615 (95% confidence interval 0.8944-1.0) in the validation set. Radiomics feature-based machine-learning methods are useful for distinguishing STS grades. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:791-797.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.