Abstract
Auscultation is the most effective method for diagnosing cardiovascular and respiratory diseases. However, stethoscopes typically capture mixed signals of heart and lung sounds, which can affect the auscultation effect of doctors. Therefore, the efficient separation of mixed heart and lung sound signals plays a crucial role in improving the diagnosis of cardiovascular and respiratory diseases. In this paper, we propose a blind source separation method for heart and lung sounds based on deep autoencoder (DAE), nonnegative matrix factorization (NMF) and variational mode decomposition (VMD). Firstly, DAE is employed to extract highly informative features from the heart and lung sound signals. Subsequently, NMF clustering is applied to group the heart and lung sounds based on their distinct periodicities, achieving the separation of the mixed heart and lung sounds. Finally, variational mode decomposition is used for denoising the separated signals. Experimental results demonstrate that the proposed method effectively separates heart and lung sound signals and exhibits significant advantages in terms of standardized evaluation metrics when compared to contrast methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.