Abstract

To address the green reentrant hybrid flow shop-scheduling problem (GRHFSP), we performed lifecycle assessments for evaluating the comprehensive impact of resources and the environment. An optimization model was established to minimize the maximum completion time and reduce the comprehensive impact of resources and the environment, and an improved moth-flame optimization algorithm was developed. A coding scheme based on the number of reentry layers, stations, and machines was designed, and a hybrid population initialization strategy was developed, according to a situation wherein the same types of nonequivalent parallel machines were used. Two different update strategies were designed for updating the coding methods of processes and machines. The population evolution strategy was adopted to improve the local search ability of the proposed algorithm and the quality of the solution. Through simulation experiments based on different datasets, the effectiveness of the proposed algorithm was verified, and comparative evaluations revealed that the proposed algorithm could solve the GRHFSP more effectively than other well-known algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call