Abstract
In the field of practical application of nuclear technology, one of the vital steps is the interpretation of gamma energy spectrum, which can obtain the type and content of radionuclides and achieve further analyzation. Convolutional neural network is one the most basic and effective algorithm structures in deep learning because it has local receptive field, weight sharing and down sampling structure, it solves the problem of parameter expansion caused by full connection and reduces the number of weights. That can be used to study the resolution of gamma-ray spectra of convolutional neural networks. This paper introduces the spectral forming principle of gamma spectra and the convolutional neural network, and USES the convolutional neural network to study the spectral decomposition of gamma spectra. In this paper, a multi-layer convolution neural network model is built based on C# software. The convolution neural network is applied to gamma-ray spectrum decomposition, and the U, Th, K nuclides are identified and semi-quantitatively calculated. By identifying and analysing different energy spectrum data, it is shown that the modified model structure can be applied to the spectral decomposition of gamma spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.