Abstract
NOx has become one of the main culprits causing the global greenhouse effect, and excessive emissions of NOx can also cause some common diseases in humans. The denitrification of power plant boilers has been 100% popularized, and their denitrification efficiency has reached national and local environmental requirements (such as Selective Catalytic Reduction, SCR). However, small gas boilers, due to their use of relatively clean fuels, have relatively low NOx emissions. But, local environmental protection departments have weak supervision of small clean fuel boilers, and these equipment generally lack specialized denitrification equipment, resulting in NOx emissions still not meeting standards. In addition, there are many small gas boilers, resulting in high total emissions. The fully premixed burner of a small gas boiler has the effect of suppressing NOx production during combustion. This study designed a surface porous burner with different combustion intensities at different positions. The experimental results and numerical calculations show that for horizontal combustion, the burner has different intake rates at different axial positions, enabling uniform combustion throughout the entire furnace, with NOx emissions below 30 mg/Nm3. The numerical simulation results show that the NOx emissions are 26.6 mg/m3. The calculated results are in good agreement with the actual situation. The generation of NOx is mainly thermal, with a maximum error of 15.4% between the calculated and experimental values. The difference between the calculated value of O and the experimental one is 5.1%. It can be seen that numerical simulation has considerable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.