Abstract
For segmented telescopes, achieving fine co-focus adjustment is essential for realizing co-phase adjustment and maintenance, which involves adjusting the millimeter-scale piston between segments to fall within the capture range of the co-phase detection system. CGST proposes using a SHWFS for piston detection during the co-focus adjustment stage. However, the residual piston after adjustment exceeds the capture range of the broadband PSF phasing algorithm( ± 30μm), and the multi-wavelength PSF algorithm requires even higher precision in co-focus adjustment. To improve the co-focus adjustment accuracy of CGST, a fine co-focus adjustment based on cross-calibration is proposed. This method utilizes a high-precision detector to calibrate and fit the measurements from the SHWFS, thereby reducing the impact of atmospheric turbulence and systematic errors on piston measurement accuracy during co-focus adjustment. Simulation results using CGST demonstrate that the proposed method significantly enhances adjustment accuracy compared to the SHWFS detection method. Additionally, the residual piston after fine co-focus adjustment using this method falls within the capture range of the multi-wavelength PSF algorithm. To verify the feasibility of this method, experiments were conducted on an 800mm ring segmented mirror system, successfully achieving fine co-focus adjustment where the remaining piston of all segments fell within ±15μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.