Abstract

The conventional fault diagnosis of patient monitors heavily relies on manual experience, resulting in low diagnostic efficiency and ineffective utilization of fault maintenance text data. To address these issues, this paper proposes an intelligent fault diagnosis method for patient monitors based on multi-feature text representation, improved bidirectional gate recurrent unit (BiGRU) and attention mechanism. Firstly, the fault text data was preprocessed, and the word vectors containing multiple linguistic features was generated by linguistically-motivated bidirectional encoder representation from Transformer. Then, the bidirectional fault features were extracted and weighted by the improved BiGRU and attention mechanism respectively. Finally, the weighted loss function is used to reduce the impact of class imbalance on the model. To validate the effectiveness of the proposed method, this paper uses the patient monitor fault dataset for verification, and the macro F1 value has achieved 91.11%. The results show that the model built in this study can realize the automatic classification of fault text, and may provide assistant decision support for the intelligent fault diagnosis of the patient monitor in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.