Abstract
Inter-Personal Relationship Extraction is an important part of knowledge extraction and is also the fundamental work of constructing the knowledge graph of people’s relationships. Compared with the traditional pattern recognition methods, the deep learning methods are more prominent in the relation extraction (RE) tasks. At present, the research of Chinese relation extraction technology is mainly based on the method of kernel function and Distant Supervision. In this paper, we propose a Chinese relation extraction model based on Bidirectional GRU network and Attention mechanism. Combining with the structural characteristics of the Chinese language, the input vector is input in the form of word vectors. Aiming at the problem of context memory, a Bidirectional GRU neural network is used to fuse the input vectors. The feature information of the word level is extracted from a sentence, and the sentence feature is extracted through the Attention mechanism of the word level. To verify the feasibility of this method, we use the distant supervision method to extract data from websites and compare it with existing relationship extraction methods. The experimental results show that Bi-directional GRU with Attention mechanism model can make full use of all the feature information of sentences, and the accuracy of Bi-directional GRU model is significantly higher than that of other neural network models without Attention mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.