Abstract

To prolong the service life of large-scale journal bearings, the major factors that have influences on bearing performances should be taken into account. By consideration of the variations of viscosity and density with pressure and temperature, a more thorough thermo-hydrodynamic lubrication model was established. With designation of variables with nondimensional parameters, a series of equations were nondimensionied, and the corresponding energy equations at different oil-film layers and boundaries were obtained respectively according to proper difference formats, and then solved by the integration of Finite Difference Method (FDM) with Boundary Element Method (BEM). Calculation results have proved that such complete mathematical model could provide great theoretical guide meaning to improve the lubrication performances and to prolong the service life of contact components of heavy journal bearings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.