Abstract
Objectives This paper aims to address the challenge of low accuracy in single-modal driver anger recognition by introducing a multimodal driver anger recognition model. The primary objective is to develop a multimodal fusion recognition method for identifying driver anger, focusing on electrocardiographic (ECG) signals and driving behavior signals. Methods Emotion-inducing experiments were performed employing a driving simulator to capture both ECG signals and driving behavioral signals from drivers experiencing both angry and calm moods. An analysis of characteristic relationships and feature extraction was conducted on ECG signals and driving behavior signals related to driving anger. Seventeen effective feature indicators for recognizing driving anger were chosen to construct a dataset for driver anger. A binary classification model for recognizing driving anger was developed utilizing the Support Vector Machine (SVM) algorithm. Results Multimodal fusion demonstrated significant advantages over single-modal approaches in emotion recognition. The SVM-DS model using decision-level fusion had the highest accuracy of 84.75%. Compared with the driver anger emotion recognition model based on unimodal ECG features, unimodal driving behavior features, and multimodal feature layer fusion, the accuracy increased by 9.10%, 4.15%, and 0.8%, respectively. Conclusions The proposed multimodal recognition model, incorporating ECG and driving behavior signals, effectively identifies driving anger. The research results provide theoretical and technical support for the establishment of a driver anger system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.