Abstract

Background and objectiveHuman factors are important contributors to accidents, especially human error induced by fatigue. In this study, field tests and analyses were conducted on physiological indexes extracted from electrocardiography (ECG) and electromyography (EMG) signals in miners working under the extreme conditions of a plateau environment. To provide insights into models for fatigue classification and recognition based on machine learning, multi-modal feature information fusion and miner fatigue identification based on ECG and EMG signals as physiological indicators were studied. MethodsFifty-five miners were randomly selected as field test subjects, and characteristic signals were extracted from 110 groups of ECG and EMG signals as the basic signals for fatigue analysis. We conducted principal component analysis (PCA) and grey relational analysis (GRA) on the measurement indicators. Support vector machine (SVM), random forest (RF) and extreme gradient boosting (XG-Boost) machine learning models were used for fatigue classification based on multi-modal information fusion. The area under the receiver operating characteristic (ROC) curve and the confusion matrix were used to evaluate the performance of the recognition models. ResultsThe ECG and EMG signals showed obvious changes with fatigue. The results of fatigue model identification showed that PCA feature fusion was superior to GRA feature fusion for all three machine learning approaches, and XG-Boost achieved the best performance, with a recognition accuracy of 89.47%, a sensitivity and specificity of 100%, and an AUC of 0.90. The SVM model also showed good recognition performance (89.47% accuracy, AUC=0.89). The worst performance was that of the RF model, with a recognition accuracy of only 78.95%. ConclusionsThis study shows that the physiological indexes of ECG and EMG exhibit obvious, regular changes with fatigue and that it is feasible to use SVM, RF and XG-Boost models for miner fatigue identification. The PCA fusion technique can improve the identification accuracy more than the GRA method. XG-Boost classification yields the best accuracy and robustness. This study can serve as a reference for clinical research on the identification of human fatigue at high altitudes and for the clinical study of acute mountain sickness and human acclimatization to high altitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.