Abstract
Micro-hole aerostatic bearings are important components in micro-low-gravity simulation of aerospace equipment, and the accuracy of micro-low-gravity simulation tests is affected by them. In order to eliminate the influence of air resistance on the attitude control accuracy of remote sensing satellites and achieve high fidelity of micro-low-gravity simulation tests, in this study, a design and parameter optimization method was proposed for micro-hole aerostatic bearings for a vacuum environment. Firstly, the theoretical analysis was conducted to investigate the impact of various bearing parameters and external conditions on the bearing load capacity and mass flow. Subsequently, a function model describing the variation in bearing load capacity and mass flow with bearing parameters was obtained utilizing a BP neural network. The parameters of aerostatic bearings in a vacuum environment were optimized using the non-dominated sorting genetic algorithm (NSGA-II) with the objectives of maximizing the load capacity and minimizing the mass flow. Subsequently, experimental tests were conducted on the optimized bearings in both atmospheric and vacuum conditions to evaluate their load capacity and mass flow. The results show that in a vacuum environment, the load capacity and mass flow of aerostatic bearings are increased compared to those in standard atmospheric conditions. Furthermore, it has been determined that the optimal solution for the bearing’s load capacity and mass flow occurs when the bearing has an orifice aperture of 0.1 mm, 36 holes, and an orifice distribution diameter of 38.83 mm. The corresponding load capacity and mass flow are 460.644 N and 11.816 L/min, respectively. The experimental and simulated errors are within 10%; thus, the accuracy of the simulation is verified.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.