Abstract

For the design and application of ultra-high speed aerostatic spindle, it is often difficult to determine the load capacity of bearing gas film because of nonlinear problem, especially when the gas film is very thin. As ultra-high speed aerostatic spindle is working, rotational velocity of spindle ranges up to 300,000 rpm, while Reynolds number of air flow also increases in aerostatic bearing, so we need to consider the impact of gas inertia on the load capacity. In order to improve design accuracy of ultra-high speed aerostatic spindle, it is vitally necessary to consider hydrodynamic effect of aerostatic bearings. By using finite element analysis software ANSYS software as analysis platform, through finite element the analysis of the internal flow field of aerostatic thrust bearing, this paper obtains the relationship of rotation speed and load capacity of aerostatic thrust bearing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call