Abstract

The sealing system, as the most important load-bearing component, is a critical part of the stack assembly in a proton exchange membrane fuel cell (PEMFC). Currently, flat or single-peak sealing gaskets are commonly used for large metal bipolar plate sealing, which can easily cause problems such as significant internal stress and distortion displacement. In order to solve this problem, an innovative double-peak sealing gasket structure is proposed. Based on the Mooney–Rivlin constitutive model, the impact of the sealing material hardness, friction coefficient, and compression ratio on the sealing performance are investigated. Meanwhile, the double-peak seal is fabricated and assembled into a single fuel cell for testing. The results show that the sealing performance of a double-peak sealing gasket with extended wings has been optimized, and the maximum contact pressure on the upper and lower contact surfaces is 1.2 MPa and 0.67 MPa, respectively, which is greater than the given air pressure of 0.1 MPa. And the sealing effect is optimal with a 45 Shore A hardness rubber, a friction coefficient of 0.05, and an initial compression ratio of 35%. The simulation and experimental sealing performance of the sealing gasket under different compression ratios remain similar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call