Abstract
Conveyor belt longitudinal tear is one of the most serious problems in coal mining. Existing systems cannot realise lossless and real-time detection for longitudinal tear of conveyor belt. Currently, visual detecting systems are proposed by many researchers and are becoming the future trend. A visual recognition system based on using laser and area light sources is designed in this study, which can recognise and count abrasions, incomplete-tears, and complete-tears. The advantage of the system is to prevent longitudinal tear based on multi-feature information. In the process of detecting conditional characteristics, laser and area light sources are responsible for enhancing contrast between conditional features and conveyor belt surface, meanwhile false corner filtration and single-point feature identification method are designed for improving recognition accuracy of the system. Compared with several current systems, the designed system has a better performance on recognising complex tear characteristics of conveyor belt, thus the problem of starting warning only based on single feature can be effectively avoided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.