Abstract

A reliable condition monitoring system is very useful in a wide range of industries to detect the occurrence of incipient defects so as to prevent machinery performance degradation, malfunction and sudden failure. Among the rotating machinery, many mechanical problems are attributed due to bearing failures. So implementing condition monitoring for bearing is critically needed. Considering that most research for condition monitoring only focus on detecting the existing fault, this paper add degradation tendency prognostics into the condition monitoring process. The kernel of bearing condition monitoring method presented in this paper is related to condition features extraction and remaining useful life prediction. The former is realized by the comprehensive vibration analysis for specific fault frequencies. The latter is achieved by adaptive neuron-fuzzy inference system based on extracted degradation signal. For illustration purpose, a bearing case from NASA data repository is used to validate the feasibility of the proposed method. The result indicates that the performance degradation of bearing can be effectively monitored and the predicted remaining useful life with 5.6% relative error can be the important reference for maintenance decision making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call