Abstract

The carbon emissions of the beer industry have always been a concern. To reduce environmental pollution, this paper systematically calculates the carbon emissions of the beer supply chain and studies the optimization of carbon emissions reduction through scenario simulation. In this study, the boundary of the beer supply chain carbon emissions system is constructed. The scenario simulation and simulation analysis are carried out based on five factors: water recycling utilization rate, power generation mode, weight-volume ratio, recovery ratio, and transportation mode. To obtain the optimal scheme of economic cost and emissions reduction, the cost of the beer supply chain is analyzed under the condition of carbon trading. The results show that the proportion of carbon emissions in each link of the beer supply chain is production, packaging, transportation, and storage, which are 59.58%, 22.27%, 17.67%, and 0.5%, respectively. The improvement of the water recycling utilization rate of manufacturing enterprises can reduce the overall carbon emissions of the supply chain, and the effect is obvious. The highest proportion of carbon emissions in the packaging link is the bottle consumption stage (22.43%). Raw materials transportation accounts for the highest proportion of total carbon emissions in transportation (63.73%). The waterway/railway ratio will be increased to 0.6/0.4, and the carbon emissions in the supply chain will be reduced by 5.7%. In the context of carbon trading, when the carbon trading price is higher than 49.16 yuan/ton, enterprises can achieve a win-win situation in reducing emissions and maintaining positive economic growth by the measures given in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call