Abstract
To effectively detect the surface cracks of subway tunnels, an automatic tunnel crack detection system based on machine vision is presented. Aiming at the problems of environmental complexity and low contrast in subway tunnels, the image texture feature is first enhanced by the methods of frequency domain filtering and spatial differencing. Then, depending on the characteristics of the tunnel cracks in question, the crack propagation method is used to extract the complete cracks. Finally, broken cracks are connected during processing, and the method of combining projection and threshold is used to determine the crack types. At the same time, characteristics such as the length, width, and area of the cracks are obtained. The experimental results show that the presented methods can effectively extract complete cracks in complex tunnel environments. The identification error of tunnel crack parameters meets the actual engineering requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.