Abstract

With the ongoing amendment of the European Union legislation on the treatment of municipal wastewater, stricter requirements for the removal of pollutants are expected, which calls for the need for innovative wastewater treatment technologies. Our research was focused on the removal of ammonium nitrogen from municipal wastewater by nontraditional processes based on the use of adsorption processes on zeolite (ZEO) and ozone. Adsorption, adsorption-regeneration, and adsorptive ozonation processes were applied. All processes were carried out in a completely stirred reactor (CSR) and a jet-loop reactor (JLR) with external recirculation of the reaction mixture. Experimental measurements were carried out with real municipal wastewater after mechanical treatment. The best results were achieved in the adsorption-regeneration process, which was implemented in a current loop reactor. An average ammonium nitrogen removal efficiency of 53.1% was obtained by adjusting the pH value to 10.0. Average values of 46.2% and 49.2% for chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies are an added value of the process. The values of ammonium nitrogen, COD, and TOC removal efficiencies in individual cycles confirm the high stability of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call