Abstract

In response to the issues of premature convergence, lack of population diversity, and poor convergence accuracy in the traditional Sand Cat Swarm Optimization (SCSO) algorithm, a Multi-Strategy Improved SCSO (MISCSO) algorithm is proposed. Firstly, multiple population strategies are used to avoid premature convergence and falling into local optima traps. Secondly, a distribution estimation learning strategy is introduced to represent the relationships between individuals, using probability models to improve algorithm performance. Next, the diversity of candidate solutions in the elite pool is utilized to expand the search space and enhance the algorithm’s ability to avoid local solutions. Lastly, a Cauchy disturbance strategy is adopted to accelerate the convergence speed of the algorithm, thereby improving the search efficiency and convergence accuracy. The experimental results of CEC2017 tests show that the improved algorithm balances convergence speed and global search capabilities effectively. Finally, the algorithm is applied to actual drone path planning and compared with six other intelligent algorithms, demonstrating the practicality and effectiveness of the improved algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call