Abstract

To increase the package space for the battery pack in the rear of battery electric vehicles (BEVs), and thus extend their driving range, a novel rear axle concept called the multi-link torsion axle (MLTA) has been developed. In this work, the kinematic design was extended with an elastokinematic concept, and the MLTA was designed in CAD and realized as a prototype. It was then integrated into a B-class series-production vehicle by adding masses in different locations of the vehicle to replicate the mass distribution of a BEV. Both objective and subjective vehicle dynamic evaluations were conducted, which included kinematic and compliance tests, constant-radius cornering, straight-line braking, and a frequency response test, as well as subjective evaluations by both expert and normal drivers. These test results were analyzed and compared to a production vehicle. It can be concluded that the vehicle dynamic performance of the MLTA-equipped vehicle is, overall, 0.67 grades lower than that of the comparable production vehicle on a 10-grade scale. According to OEM experts, this deficit can be eliminated by tuning the different components of the MLTA and meeting the tolerance requirements of series production vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.