Abstract
Gyroscopes in Micro-Electro-Mechanical Systems (MEMS) technology have high accuracy, convenient use, and broad application prospects. In practical applications, it is found that angular rate error is one of the main reasons that affect the output accuracy of gyroscopes. In the angular rate error calibration of MEMS gyroscopes, the method of calibrating the gyroscopes only by changing the bias and scale coefficients obtained by fitting cannot meet the angular rate error calibration of MEMS gyroscopes whose dynamic range exceeds . Therefore, the research proposes an improved calibration method to solve the problem of angular rate error, using dynamic compensation algorithms to achieve dynamic compensation for the angular rate of MEMS gyroscopes. Experiments show that using the dynamic compensation calibration method proposed in this paper, the root mean square error of the angular rate of MEMS gyroscopes has decreased by 52.37% compared to the previous one, verifying the feasibility of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.