Abstract

The powered roof support in a mining complex protects machines and people from the harmful effects of the rockmass. The design of the powered roof support should be strictly prepared for adverse working conditions. This especially applies to the construction of the hydraulic actuator, which is designed to transfer uncontrolled load relief. The hydraulic actuators and an adequately selected safety valve determine the requirements for safe work. The study analyses the hydraulic actuators based on the signal obtained from the dynamic impact. The signal obtained from the load of the powered roof support in the bench tests allowed us to determine the opening time of the safety valve, which is not much different than the time of the pressure increase. Until now, the valve’s operation has been primarily analysed regarding pressure increase. This research was intended to determine whether introducing the sound power method for developing powered roof support research in the near future would be helpful. The sub-piston pressure increased during bench testing, generating a dynamic impact signal. The analysed results of the sound power tests in terms of their suitability for the development of standards related to powered roof support. This paper describes a new approach to research on powered roof support. Determining the acoustic power based on bench tests for the hydraulic actuator of a powered longwall support is ground-breaking research. The research results pave the way for new technologies based on acoustic information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call