Abstract
On 8 January 2022, a Moment Magnitude (Mw) 6.7 earthquake occurred in Menyuan, China. The epicenter was located in the western segment of the Lenglongling fault of the Qilian-Haiyuan fault zone. In this area, the Mw 5.9 Menyuan earthquake on 26 August 1986 and the Mw 5.9 Menyuan earthquake on 21 January 2016 successively occurred. The seismogenic structures of the 1986 and 2016 earthquakes are on the Northern Lenglongling fault, which is a few kilometers away from the Lenglongling fault. After the 2022 Menyuan earthquake, we collected GF-7 and Sentinel-1 satellite images to measure the surface deformation of the earthquake sequence. Based on the elastic dislocation theory, the fault model and fault slip distribution of the 2016 and 2022 Mengyuan earthquakes were inverted using coseismic surface displacements. The results show that the 2016 event is a reverse event, with the maximum coseismic surface displacement on LOS reaching 8 cm. The strike, dip, and rake of the earthquake rupture were 139°, 41°, and 78°, with the maximum slip reaching 0.6 m at a depth of 8 km. The surface rupture of the 2022 Mw 6.7 earthquake ran in the WNW–ESE direction with a maximum displacement on LOS of 72 cm. The main seismogenic fault of the 2022 event was the western segment of the Lenglongling fault. The strike, dip, and rake of the rupture were 112°, 85°, and 3°, with the maximum slip reaching 4 m at a depth of 4 km. The Coulomb failure stress change shows that the earthquake sequence generated a considerable positive Coulomb failure stress of more than 2 bar. These observations suggest that the earthquake sequence around Menyuan is mainly governed by the activities of the Lenglongling fault around the northeastern Tibetan Plateau. In addition, their sequential occurrences could be related to earthquake-triggering mechanisms due to stress interaction on different deforming faults. Thus, the Lenglongling fault has received a great amount of attention regarding its potential earthquake hazards.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.