Abstract

This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion instead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical information. Two ME models were built based on simple and complex templates respectively, and the complex one gave better conversion result. Furthermore, conversion trigger pair of yA → yB/cB was proposed to extract the long-distance constrain feature from the corpus; and then Average Mutual Information (AMI) was used to select conversion trigger pair features which were added to the ME model. The experiment shows that conversion error of the ME with conversion trigger pairs is reduced by 4% on a small training corpus, comparing with HMM smoothed by absolute smoothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.