Abstract
The relationship between partition function, particle density, refractive index, and temperature for atmospheric plasma is calculated based on thermodynamics and chemical equilibrium. Taking into account the contribution of hydrogen-like levels to the atomic partition function, a compact method to calculate the atomic partition function is first used with the Eindhoven model to deduce the plasma's refractive index. Results calculated by the new approach and two other traditional simplified methods are compared and analyzed. For a better understanding on the temperature measurement accuracy deduced by different partition function disposal approaches, moiré deflectometry is employed as the experimental scheme to acquire the refractive index-position curve. Finally, applicability of different partition function disposal approaches are discussed, and results indicate that the optical properties deduced in this paper are well suited for the refractive index–based plasma diagnosis.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have