Abstract

Within the framework of solving the problems of developing intelligent optoelectronic systems for monitoring remote objects, the possibilities of constructing schemes for registering remote objects with a telescopic system based on a light field digital camera are considered. A technique for calculating a two-component optical scheme for registering distant objects by an optoelectronic system based on a digital camera of a light field is presented, and a layout of an experimental setup for registering a scale model of an object with a two-component optical system consisting of a main mirror of a Newtonian telescope and a digital camera of a light field is presented. The principles of constructing algorithms for determining the main parameters of controlled objects and high-precision calibration of the optical system of the recorder have been developed. The fundamental possibility of constructing a light field correlator on the basis of a telescope is shown. An example of processing a light field file is given. The possibility of high-precision determination of the parameters of remote objects has been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call