Abstract
Purpose Rehabilitation robots with intent recognition are helping people with dysfunction to enjoy better lives. Many rehabilitation robots with intent recognition have been developed by academic institutions and commercial companies. However, there is no systematic summary about the application of intent recognition in the field of rehabilitation robots. Therefore, the purpose of this paper is to summarize the application of intent recognition in rehabilitation robots, analyze the current status of their research, and provide cutting-edge research directions for colleagues. Materials and Methods Literature searches were conducted on Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Medline. Search terms included “rehabilitation robot”, “intent recognition”, “exoskeleton”, “prosthesis”, “surface electromyography (sEMG)” and “electroencephalogram (EEG)”. References listed in relevant literature were further screened according to inclusion and exclusion criteria. Results In this field, most studies have recognized movement intent by kinematic, sEMG, and EEG signals. However, in practical studies, the development of intent recognition in rehabilitation robots is limited by the hysteresis of kinematic signals and the weak anti-interference ability of sEMG and EEG signals. Conclusions Intent recognition has achieved a lot in the field of rehabilitation robotics but the key factors limiting its development are still timeliness and accuracy. In the future, intent recognition strategy with multi-sensor information fusion may be a good solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have