Abstract

Air traffic is increasing worldwide at a steady annual rate, and airport congestion is already a major issue for air traffic controllers. The traditional method of traffic flow prediction is difficult to adapt to complex air traffic conditions. Due to its self-learning, self-organizing, self-adaptive and anti-jamming capability, the neural network can predict more effectively the air traffic flow than the traditional methods can. A good method for training is an important problem in the prediction of air traffic flow with neural network. This paper will try to find a new model to solve the traffic flow prediction problem by back propagation neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.