Abstract
In the current era, numerous social networks and messaging platforms have become integral parts of our lives, particularly in relation to work activities, due to the prevailing COVID-19 pandemic and russian war in Ukraine. Amidst this backdrop, the issue of spam and spammers has become more pertinent than ever, with a continuous rise in the incidence of spam within work-related text streams. Spam refers to textual content that is extraneous to a specific text stream, while a spammer denotes an individual who disseminates unsolicited messages for personal gain. The proposed article is devoted to address this scientific and practical challenge of identifying spammers and detecting spam messages within the textual context of any social network or messenger. This endeavor encompasses the utilization of diverse spam detection algorithms and approaches for spammer identification. Four algorithms were implemented, namely a naive Bayesian classifier, Support-vector machine, multilayer perceptron neural network, and convolutional neural network. The research objective was to develop a spam detection algorithm that can be seamlessly integrated into a messenger platform, exemplified by the utilization of Telegram as a case study. The designed algorithm discerns spam based on the contextual characteristics of a specific text stream, subsequently removing the spam message and blocking the spammer-user until authorized by one of the application administrators.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have