Abstract
AbstractAssociation rules mining (ARM) is one of the most useful techniques in the field of knowledge discovery and data mining and so on. Frequent item sets mining plays an important role in association rules mining. Apriori algorithm and FP-growth algorithm are famous algorithms to find frequent item sets. Based on analyzing on an association rule mining algorithm, a new association rule mining algorithm, called HSP-growth algorithm, is presented to generate the simplest frequent item sets and mine association rules from the sets. HSP-growth algorithm uses Huffman tree to describe frequent item sets. The basic idea and process of the algorithm are described and how to affects association rule mining is discussed. The performance study and the experimental results show that the HSP-growth algorithm has higher mining efficiency in execution time and is more efficient than Apriori algorithm and FP-growth algorithm.Keywordsassociation rule miningfrequent item setsApriori algorithmFP-growth algorithm
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have