Abstract

This study developed and controlled laser scanning mechanism and circuit design, in order to reduce the vibratory magnitude resulted from high-speed operation. The principle of mechanism design is that the output end mirror can swing within ± 3° when the laser scanning mechanism is in operation, the accuracy value is ± 0.2°. The static simulation and dynamic measurement were carried out for mutual validation. The vibration generated in the operation of machine causes dynamic unbalance, influencing the stability of machine. In order to overcome and improve the dynamic unbalance generated when the mechanism is in motion, different solutions were proposed, such as changing the output end mass, to add elastic material in or to change constant speed control of input end motor to variable speed control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.