Abstract

With the hot topic of “Carbon Neutrality”, energy efficiency and saving practices such as reducing fuel consumption, vigorously advocating new energy power and modern rail are now becoming the main research topics of energy conversion technologies. Supercapacitors, with their ability of higher power density, fast charging, and instantaneous high current output, have become an indispensable energy storage element in modern traction systems for modern rail. This proposal introduced wireless power transfer technologies by using LC series resonant technology for charging the supercapacitors. To match the voltage and current level of the supercapacitor, a four-switch buck-boost converter was applied on the secondary side of the load-matching converter. To regulate the wireless transfer power and charging power of the supercapacitor, the active modulation control method was introduced on both the primary and secondary sides of the transfer system. On the primary side, the power is controlled by controlling the current in resonant inductance through the phase shift control method, while on the secondary side, the charging power is controlled by regulating the input voltage of the four-switch buck-boost converter followed by inductance current control. The theoretical analysis under phase shift mode for the primary side and pulse width modulation for a four-switch buck-boost converter with a supercapacitor load (voltage source) were proposed in detail, and the state-space model of the load matching converter was established for controller design to obtain precise voltage and current control. Both open loop and closed loop simulation models were built in the MATLAB/SIMULINK environment, and simulations were carried out to evaluate the system characteristics and control efficiency. The experimental platform was established based on a dsPIC33FJ64GS606 digital controller. Experiments were carried out, and the results successfully verified the effectiveness of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call