Abstract
Based on the research of thermal cloak, directional heat transmission structure is proposed in this paper. On the basis of transformation thermodynamics, the thermal conductivity expression for directional heat transmission structure is derived by the oblique coordinate transformation. The results from the numeric calculation indicate that the heat flux flows to the designed high temperature side while the low temperature side remains at low temperature. Furthermore, rotational transformation is performed on the basis of oblique coordinate transformation. The derived thermal conductivity expression has two vertical segments. The calculation results display that with the increase of the thermal conductivity along the normal of the high temperature side, the heat transmission efficiency is improved greatly. Moreover, the temperature difference between the high and low temperature side increases after the rotational transformation. Directional heat transmission has potential applications in infrared stealth and heat protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.